Methane and nitrous oxide sources and emissions in a subtropical freshwater reservoir, South East Queensland, Australia

Reservoirs have been identified as an important source of non-carbon dioxide (CO2) greenhouse gases with wide ranging fluxes for reported methane (CH4); however, fluxes for nitrous oxide (N2O) are rarely quantified. This study investigates CH4 and N2O sources and emissions in a subtropical freshwate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeosciences 2014-09, Vol.11 (18), p.5245-5258
Hauptverfasser: Sturm, K, Yuan, Z, Gibbes, B, Werner, U, Grinham, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reservoirs have been identified as an important source of non-carbon dioxide (CO2) greenhouse gases with wide ranging fluxes for reported methane (CH4); however, fluxes for nitrous oxide (N2O) are rarely quantified. This study investigates CH4 and N2O sources and emissions in a subtropical freshwater Gold Creek Reservoir, Australia, using a combination of water–air and sediment–water flux measurements and water column and pore water analyses. The reservoir was clearly a source of these gases as surface waters were supersaturated with CH4 and N2O. Atmospheric CH4 fluxes were dominated by ebullition (60 to 99%) relative to diffusive fluxes and ranged from 4.14 × 102 to 3.06 × 105 μmol CH4 m−2 day−1 across the sampling sites. Dissolved CH4 concentrations were highest in the anoxic water column and sediment pore waters (approximately 5 000 000% supersaturated). CH4 production rates of up to 3616 ± 395 μmol CH4 m−2 day−1 were found during sediment incubations in anoxic conditions. These findings are in contrast to N2O where no production was detected during sediment incubations and the highest dissolved N2O concentrations were found in the oxic water column which was 110 to 220% supersaturated with N2O. N2O fluxes to the atmosphere were primarily through the diffusive pathway, mainly driven by diffusive fluxes from the water column and by a minor contribution from sediment diffusion and ebullition. Results suggest that future studies of subtropical reservoirs should monitor CH4 fluxes with an appropriate spatial resolution to ensure capture of ebullition zones, whereas assessment of N2O fluxes should focus on the diffusive pathway.
ISSN:1726-4189
1726-4170
1726-4189
DOI:10.5194/bg-11-5245-2014