Prediction of Treatment Recommendations Via Ensemble Machine Learning Algorithms for Non-Small Cell Lung Cancer Patients in Personalized Medicine

Objectives: The primary goal of this research is to develop treatment-related genomic predictive markers for non-small cell lung cancer by integrating various machine learning algorithms that recommends near-optimal individualized patient treatment for chemotherapy in an effort to maximize efficacy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer informatics 2024-01, Vol.23, p.11769351241272397
Hauptverfasser: Moon, Hojin, Tran, Lauren, Lee, Andrew, Kwon, Taeksoo, Lee, Minho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives: The primary goal of this research is to develop treatment-related genomic predictive markers for non-small cell lung cancer by integrating various machine learning algorithms that recommends near-optimal individualized patient treatment for chemotherapy in an effort to maximize efficacy or minimize treatment-related toxicity. This research can contribute toward developing a more refined, accurate and effective therapy accounting for specific patient needs. Methods: To accomplish our research goal, we implement ensemble learning algorithms, bagging with regularized Cox regression models and nonparametric tree-based models via Random Survival Forests. A comprehensive meta-database was compiled from the NCBI Gene Expression Omnibus data repository for lung cancer patients to capture and utilize complex genomic patterns that can predict treatment outcomes more accurately. Results: The developed novel prediction algorithm demonstrates the ability to support complex clinical decision-making processes in the treatment of NSCLC. It effectively addresses patient heterogeneity, offering predictions that are both refined and personalized in improving the precision of chemotherapy regimens prescribed to the eligible patients. Conclusion: This research should contribute substantial advancement of cancer treatments by improving the accuracy and efficacy of chemotherapy treatments for a targeted group of patients who need the right treatment. The integration of complex machine learning techniques with genomic data holds substantial potential to transform current cancer treatment paradigms by providing robust support in clinical decision-making.
ISSN:1176-9351
1176-9351
DOI:10.1177/11769351241272397