New developments in fractional integral inequalities via convexity with applications

The main objective of this article is to build up a new integral equality related to Riemann Liouville fractional (RLF) operator. Based on this integral equality, we show numerous new inequalities for differentiable convex as well as concave functions which are similar to celebrated Hermite-Hadamard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2023-01, Vol.8 (7), p.15950-15968
Hauptverfasser: Karim, Maimoona, Fahmi, Aliya, Qaisar, Shahid, Ullah, Zafar, Qayyum, Ather
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main objective of this article is to build up a new integral equality related to Riemann Liouville fractional (RLF) operator. Based on this integral equality, we show numerous new inequalities for differentiable convex as well as concave functions which are similar to celebrated Hermite-Hadamard and Simpson's integral inequalities. The present outcomes of this paper are a unification and generalization of the comparable results in the literature on Hermite-Hadamard and Simpson's integral inequalities. Furthermore as applications in numerical analysis, we find some means, q-digamma function and modified Bessel function type inequalities.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2023814