Neutron Imaging of Laser Melted SS316 Test Objects with Spatially Resolved Small Angle Neutron Scattering
A novel neutron far field interferometer is explored for sub-micron porosity detection in laser sintered stainless steel alloy 316 (SS316) test objects. The results shown are images and volumes of the first quantitative neutron dark-field tomography at various autocorrelation lengths, ξ . In this pr...
Gespeichert in:
Veröffentlicht in: | Journal of imaging 2017-12, Vol.3 (4), p.58 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel neutron far field interferometer is explored for sub-micron porosity detection in laser sintered stainless steel alloy 316 (SS316) test objects. The results shown are images and volumes of the first quantitative neutron dark-field tomography at various autocorrelation lengths, ξ . In this preliminary work, the beam defining slits were adjusted to an uncalibrated opening of 0.5 mm horizontal and 5 cm vertical; the images are blurred along the vertical direction. In spite of the blurred attenuation images, the dark-field images reveal structural information at the micron-scale. The topics explored include: the accessible size range of defects, potentially 338 nm to 4.5 μ m, that can be imaged with the small angle scattering images; the spatial resolution of the attenuation image; the maximum sample dimensions compatible with interferometry optics and neutron attenuation; the procedure for reduction of the raw interferogram images into attenuation, differential phase contrast, and small angle scattering (dark-field) images; and the role of neutron far field interferometry in additive manufacturing to assess sub-micron porosity. |
---|---|
ISSN: | 2313-433X 2313-433X |
DOI: | 10.3390/jimaging3040058 |