New and Efficient Estimators of Reliability Characteristics for a Family of Lifetime Distributions under Progressive Censoring

Estimation of reliability and stress–strength parameters is important in the manufacturing industry. In this paper, we develop shrinkage-type estimators for the reliability and stress–strength parameters based on progressively censored data from a rich class of distributions. These new estimators im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-05, Vol.12 (10), p.1599
Hauptverfasser: Ahmed, Syed Ejaz, Belaghi, Reza Arabi, Hussein, Abdulkadir, Safariyan, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Estimation of reliability and stress–strength parameters is important in the manufacturing industry. In this paper, we develop shrinkage-type estimators for the reliability and stress–strength parameters based on progressively censored data from a rich class of distributions. These new estimators improve the performance of the commonly used Maximum Likelihood Estimators (MLEs) by reducing their mean squared errors. We provide analytical asymptotic and bootstrap confidence intervals for the targeted parameters. Through a detailed simulation study, we demonstrate that the new estimators have better performance than the MLEs. Finally, we illustrate the application of the new methods to two industrial data sets, showcasing their practical relevance and effectiveness.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12101599