Quantum Dots Assembled with Photosynthetic Antennae on a Carbon Nanotube Platform: A Nanohybrid for the Enhancement of Light Energy Harvesting

The construction of artificial systems for solar energy harvesting is still a challenge. There needs to be a light-harvesting antenna with a broad absorption spectrum and then the possibility to transfer harvested energy to the reaction center, converting photons into a storable form of energy. Bioi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2023-11, Vol.8 (44), p.41991-42003
Hauptverfasser: Sławski, Jakub, Maciejewski, Jan, Szukiewicz, Rafał, Gieczewska, Katarzyna, Grzyb, Joanna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The construction of artificial systems for solar energy harvesting is still a challenge. There needs to be a light-harvesting antenna with a broad absorption spectrum and then the possibility to transfer harvested energy to the reaction center, converting photons into a storable form of energy. Bioinspired and bioderivative elements may help in achieving this aim. Here, we present an option for light harvesting: a nanobiohybrid of colloidal, semiconductor quantum dots (QDs) and natural photosynthetic antennae assembled on the surface of a carbon nanotube. For that, we used QDs of cadmium telluride and cyanobacterial phycobilisome rods (PBSr) or light-harvesting complex II (LHCII) of higher plants. For this nanobiohybrid, we confirmed composition and organization using infrared spectroscopy, X-ray photoelectron spectroscopy, and high-resolution confocal microscopy. Then, we proved that within such an assembly, there is a resonance energy transfer from QD to PBSr or LHCII. When such a nanobiohybrid was further combined with thylakoids, the energy was transferred to photosynthetic reaction centers and efficiently powered the photosystem I reaction center. The presented construct is proof of a general concept, combining interacting elements on a platform of a nanotube, allowing further variation within assembled elements.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c07673