Optimization of hydropower energy generation by 14 robust evolutionary algorithms

The use of evolutionary algorithms (EAs) for solving complex engineering problems has been very promising, so the application of EAs for optimal operation of hydropower reservoirs can be of great help. Accordingly, this study investigates the capability of 14 recently-introduced robust EAs in optimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-05, Vol.12 (1), p.7739-7739, Article 7739
Hauptverfasser: Sharifi, Mohammad Reza, Akbarifard, Saeid, Madadi, Mohamad Reza, Qaderi, Kourosh, Akbarifard, Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of evolutionary algorithms (EAs) for solving complex engineering problems has been very promising, so the application of EAs for optimal operation of hydropower reservoirs can be of great help. Accordingly, this study investigates the capability of 14 recently-introduced robust EAs in optimization of energy generation from Karun-4 hydropower reservoir. The best algorithm is the one that produces the largest objective function (energy generation) and has the minimum standard deviation (SD), the minimum coefficient of variations (CV), and the shortest time of CPU usage. It was found that the best solution was achieved by the moth swarm algorithm (MSA), with the optimized energy generation of 19,311,535 MW which was 65.088% more than the actual energy generation (11,697,757). The values of objective function, SD and CV for MSA were 0.147, 0.0029 and 0.0192, respectively. The next ranks were devoted to search group algorithm (SGA), water cycle algorithm (WCA), symbiotic organism search algorithm (SOS), and coyote optimization algorithm (COA), respectively, which have increased the energy generation by more than 65%. Some of the utilized EAs, including grasshopper optimization algorithm (GOA), dragonfly algorithm (DA), antlion optimization algorithm (ALO), and whale optimization algorithm (WOA), failed to produce reasonable results. The overall results indicate the promising capability of some EAs for optimal operation of hydropower reservoirs.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-11915-0