Roll Prediction and Parameter Identification of Marine Vessels Under Unknown Ocean Disturbances

This paper deals with two topics: roll predictions of marine vessels with machine-learning methods and parameter estimation of unknown ocean disturbances when the amplitude, frequency, offset, and phase are difficult to estimate. This paper aims to prevent the risky roll motions of marine vessels ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polish maritime research 2024-03, Vol.31 (1), p.4-15
Hauptverfasser: Lee, Sang-Do, Kim, Hwan-Seong, You, Sam-Sang, Yeon, Jeong-Hum, Phuc, Bui Duc Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with two topics: roll predictions of marine vessels with machine-learning methods and parameter estimation of unknown ocean disturbances when the amplitude, frequency, offset, and phase are difficult to estimate. This paper aims to prevent the risky roll motions of marine vessels exposed to harsh circumstances. First of all, this study demonstrates complex dynamic phenomena by utilising a bifurcation diagram, Lyapunov exponents, and a Poincare section. Without any observers, an adaptive identification applies these four parameters to the globally exponential convergence using linear second-order filters and parameter estimation errors. Then, a backstepping controller is employed to make an exponential convergence of the state variables to zero. Finally, this work presents the prediction of roll motion using reservoir computing (RC). As a result, the RC process shows good performance for chaotic time series prediction in future states. Thus, the poor predictability of Lyapunov exponents may be overcome to a certain extent, with the help of machine learning. Numerical simulations validate the dynamic behaviour and the efficacy of the proposed scheme.
ISSN:2083-7429
1233-2585
2083-7429
DOI:10.2478/pomr-2024-0001