Formation of Thin NiGe Films by Magnetron Sputtering and Flash Lamp Annealing

The nickel monogermanide (NiGe) phase is known for its electrical properties such as low ohmic and low contact resistance in group-IV-based electronics. In this work, thin films of nickel germanides (Ni-Ge) were formed by magnetron sputtering followed by flash lamp annealing (FLA). The formation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-03, Vol.10 (4), p.648, Article 648
Hauptverfasser: Begeza, Viktor, Mehner, Erik, Stoecker, Hartmut, Xie, Yufang, Garcia, Alejandro, Huebner, Rene, Erb, Denise, Zhou, Shengqiang, Rebohle, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nickel monogermanide (NiGe) phase is known for its electrical properties such as low ohmic and low contact resistance in group-IV-based electronics. In this work, thin films of nickel germanides (Ni-Ge) were formed by magnetron sputtering followed by flash lamp annealing (FLA). The formation of NiGe was investigated on three types of substrates: on amorphous (a-Ge) as well as polycrystalline Ge (poly-Ge) and on monocrystalline (100)-Ge (c-Ge) wafers. Substrate and NiGe structure characterization was performed by Raman, TEM, and XRD analyses. Hall Effect and four-point-probe measurements were used to characterize the films electrically. NiGe layers were successfully formed on different Ge substrates using 3-ms FLA. Electrical as well as XRD and TEM measurements are revealing the formation of Ni-rich hexagonal and cubic phases at lower temperatures accompanied by the formation of the low-resistivity orthorhombic NiGe phase. At higher annealing temperatures, Ni-rich phases are transforming into NiGe, as long as the supply of Ge is ensured. NiGe layer formation on a-Ge is accompanied by metal-induced crystallization and its elevated electrical resistivity compared with that of poly-Ge and c-Ge substrates. Specific resistivities for 30 nm Ni on Ge were determined to be 13.5 mu Omega.cm for poly-Ge, 14.6 mu Omega.cm for c-Ge, and 20.1 mu Omega.cm for a-Ge.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano10040648