Surrogate-based aeroelastic design optimization of tip extensions on a modern 10 MW wind turbine

Advanced aeroelastically optimized tip extensions are among rotor innovation concepts which could contribute to the higher performance and lower cost of wind turbines. A novel design optimization framework for wind turbine blade tip extensions based on surrogate aeroelastic modeling is presented. An...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind Energy Science 2021-03, Vol.6 (2), p.491-504
Hauptverfasser: Barlas, Thanasis, Ramos-García, Néstor, Pirrung, Georg Raimund, González Horcas, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advanced aeroelastically optimized tip extensions are among rotor innovation concepts which could contribute to the higher performance and lower cost of wind turbines. A novel design optimization framework for wind turbine blade tip extensions based on surrogate aeroelastic modeling is presented. An academic wind turbine is modeled in an aeroelastic code equipped with a near-wake aerodynamic module, and tip extensions with complex shapes are parametrized using 11 design variables. The design space is explored via full aeroelastic simulations in extreme turbulence, and a surrogate model is fitted to the data. Direct optimization is performed based on the surrogate model seeking to maximize the power of the retrofitted turbine within the ultimate load constraints. The presented optimized design achieves a load-neutral gain of up to 6 % in annual energy production. Its performance is further evaluated in detail by means of the near-wake model used for the generation of the surrogate model and compared with a higher-fidelity aerodynamic module comprising a hybrid filament-particle-mesh vortex method with a lifting-line implementation. A good agreement between the solvers is obtained at low turbulence levels, while differences in predicted power and flapwise blade root bending moment grow with increasing turbulence intensity.
ISSN:2366-7451
2366-7443
2366-7451
DOI:10.5194/wes-6-491-2021