Evidence on the efficacy of small unoccupied aircraft systems (UAS) as a survey tool for North American terrestrial, vertebrate animals: a systematic map
Small unoccupied aircraft systems (UAS) are replacing or supplementing occupied aircraft and ground-based surveys in animal monitoring due to improved sensors, efficiency, costs, and logistical benefits. Numerous UAS and sensors are available and have been used in various methods. However, justifica...
Gespeichert in:
Veröffentlicht in: | Environmental evidence 2023-02, Vol.12 (1), p.3-3, Article 3 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Small unoccupied aircraft systems (UAS) are replacing or supplementing occupied aircraft and ground-based surveys in animal monitoring due to improved sensors, efficiency, costs, and logistical benefits. Numerous UAS and sensors are available and have been used in various methods. However, justification for selection or methods used are not typically offered in published literature. Furthermore, existing reviews do not adequately cover past and current UAS applications for animal monitoring, nor their associated UAS/sensor characteristics and environmental considerations. We present a systematic map that collects and consolidates evidence pertaining to UAS monitoring of animals.
We investigated the current state of knowledge on UAS applications in terrestrial animal monitoring by using an accurate, comprehensive, and repeatable systematic map approach. We searched relevant peer-reviewed and grey literature, as well as dissertations and theses, using online publication databases, Google Scholar, and by request through a professional network of collaborators and publicly available websites. We used a tiered approach to article exclusion with eligible studies being those that monitor (i.e., identify, count, estimate, etc.) terrestrial vertebrate animals. Extracted metadata concerning UAS, sensors, animals, methodology, and results were recorded in Microsoft Access. We queried and catalogued evidence in the final database to produce tables, figures, and geographic maps to accompany this full narrative review, answering our primary and secondary questions.
We found 5539 articles from our literature searches of which 216 were included with extracted metadata categories in our database and narrative review. Studies exhibited exponential growth over time but have levelled off between 2019 and 2021 and were primarily conducted in North America, Australia, and Antarctica. Each metadata category had major clusters and gaps, which are described in the narrative review.
Our systematic map provides a useful synthesis of current applications of UAS-animal related studies and identifies major knowledge clusters (well-represented subtopics that are amenable to full synthesis by a systematic review) and gaps (unreported or underrepresented topics that warrant additional primary research) that guide future research directions and UAS applications. The literature for the use of UAS to conduct animal surveys has expanded intensely since its inception in 2006 but is still in it |
---|---|
ISSN: | 2047-2382 2047-2382 |
DOI: | 10.1186/s13750-022-00294-8 |