Microstructural Investigation of the Effects of Carbon Black Nanoparticles on Hydration Mechanisms, Mechanical and Piezoresistive Properties of Cement Mortars

Abstract Carbon-black nanoparticles (CBN) have been incorporated into cement-based materials for improvement of mechanical or self-sensing properties. There is no previous research focused on the microstructural evaluation of effects of CBN on both parameters. In this work, mortars containing differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2021-01, Vol.24 (4)
Hauptverfasser: Lima, Gustavo Emilio Soares de, Nalon, Gustavo Henrique, Santos, Rodrigo Felipe, Ribeiro, José Carlos Lopes, Carvalho, José Maria Franco de, Pedroti, Leonardo Gonçalves, Araújo, Eduardo Nery Duarte de
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Carbon-black nanoparticles (CBN) have been incorporated into cement-based materials for improvement of mechanical or self-sensing properties. There is no previous research focused on the microstructural evaluation of effects of CBN on both parameters. In this work, mortars containing different CBN contents were produced, cured for 28 days, and subjected to electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. Tests for determination of compressive strength, modulus of elasticity and piezoresistivity response were developed. SEM indicated that lower CBN contents refined the cementitious matrix, while higher contents increased the volume of voids. XRD and Raman spectroscopy indicated hydration improvements for CBN contents between 0.375% and 3%. The best mechanical improvements were provided by concentrations of CBN up to 3%. CBN contents of 5% and 6% provided the best sensing properties. The optimal concentration was found to be 5% of CBN, since it provided excellent piezoresistivity, without significant mechanical properties loss.
ISSN:1516-1439
1980-5373
1980-5373
DOI:10.1590/1980-5373-mr-2020-0539