Archaea dominate the microbial community in an ecosystem with low-to-moderate temperature and extreme acidity
The current view suggests that in low-temperature acidic environments, archaea are significantly less abundant than bacteria. Thus, this study of the microbiome of Parys Mountain (Anglesey, UK) sheds light on the generality of this current assumption. Parys Mountain is a historically important coppe...
Gespeichert in:
Veröffentlicht in: | Microbiome 2019-01, Vol.7 (1), p.11-11, Article 11 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The current view suggests that in low-temperature acidic environments, archaea are significantly less abundant than bacteria. Thus, this study of the microbiome of Parys Mountain (Anglesey, UK) sheds light on the generality of this current assumption. Parys Mountain is a historically important copper mine and its acid mine drainage (AMD) water streams are characterised by constant moderate temperatures (8-18 °C), extremely low pH (1.7) and high concentrations of soluble iron and other metal cations.
Metagenomic and SSU rRNA amplicon sequencing of DNA from Parys Mountain revealed a significant proportion of archaea affiliated with Euryarchaeota, which accounted for ca. 67% of the community. Within this phylum, potentially new clades of Thermoplasmata were overrepresented (58%), with the most predominant group being "E-plasma", alongside low-abundant Cuniculiplasmataceae, 'Ca. Micrarchaeota' and 'Terrestrial Miscellaneous Euryarchaeal Group' (TMEG) archaea, which were phylogenetically close to Methanomassilicoccales and clustered with counterparts from acidic/moderately acidic settings. In the sediment, archaea and Thermoplasmata contributed the highest numbers in V3-V4 amplicon reads, in contrast with the water body community, where Proteobacteria, Nitrospirae, Acidobacteria and Actinobacteria outnumbered archaea. Cultivation efforts revealed the abundance of archaeal sequences closely related to Cuniculiplasma divulgatum in an enrichment culture established from the filterable fraction of the water sample. Enrichment cultures with unfiltered samples showed the presence of Ferrimicrobium acidiphilum, C. divulgatum, 'Ca. Mancarchaeum acidiphilum Mia14', 'Ca. Micrarchaeota'-related and diverse minor ( |
---|---|
ISSN: | 2049-2618 2049-2618 |
DOI: | 10.1186/s40168-019-0623-8 |