Research on Multi-Optimal Project of Outlet Guide Vanes of Nuclear Grade Axial Flow Fan Based on Sensitivity Analysis
Nuclear grade axial flow fans are widely used in nuclear power plants for ventilation and heat dissipation and have the advantages of high efficiency and high flow rates. A nuclear grade axial flow fan with OGVs (outlet guide vanes) can recover the kinetic energy of the dynamic impeller outlet windi...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2022-03, Vol.12 (6), p.3029 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nuclear grade axial flow fans are widely used in nuclear power plants for ventilation and heat dissipation and have the advantages of high efficiency and high flow rates. A nuclear grade axial flow fan with OGVs (outlet guide vanes) can recover the kinetic energy of the dynamic impeller outlet winding to increase the ventilator pressure, thus improving the ventilator efficiency; therefore, the OGVs play an essential role in the performance of the axial flow fan. Based on accurate numerical simulations, an MRGP approximation model was developed to analyse the factors affecting the OGVs duct and optimise the guide vane structure, combined with the Sobol method for sensitivity analysis. The experiments and numerical simulations show that the total pressure of the optimised model increases by 154 Pa, and the noise decreases by 4.1 dB. The multi-objective optimisation method using the parametric approach and combining it with the MRGP model is highly reliable. It provides a key design direction for optimising nuclear grade axial flow fans. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app12063029 |