Nitrate leaching is the main driving factor of soil calcium and magnesium leaching loss in intensive plastic-shed vegetable production systems
Soil pH is important for influencing soil properties. High input of nitrogen (N) fertilizers and irrigation water has accelerated the soil acidification in plastic-shed greenhouses. However, little is known about the dynamics of soil pH buffering system, especially the base cations, and its response...
Gespeichert in:
Veröffentlicht in: | Agricultural water management 2024-03, Vol.293, p.108708, Article 108708 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Soil pH is important for influencing soil properties. High input of nitrogen (N) fertilizers and irrigation water has accelerated the soil acidification in plastic-shed greenhouses. However, little is known about the dynamics of soil pH buffering system, especially the base cations, and its response mechanisms under different N management practices. In this study, we investigated the responses of soil Ca2+ and Mg2+ leaching loss to nitrate leaching under different N application rate, N forms, or straw addition. Our long-term experiment in typical greenhouses showed that N application significantly decreased soil pH and increased Ca2+ and Mg2+ leaching loss by 43.1–73.6%, which correlated significantly and positively with nitrate leaching loss. However, optimizing N application and straw incorporation alleviated the leaching loss of Ca2+ and Mg2+ not only by alleviating the accompanying nitrate leaching caused by reduced N input, but also by reducing the conversion of exchangeable Ca2+ and Mg2+ to water-soluble Ca2+ and Mg2+ caused by alleviating soil pH reduction. The laboratory microcosm experiment showed that nitrate application did not reduce soil pH, but significantly increased the leaching loss of Ca2+ and Mg2+. Ammonium sulfate application also significantly increased the leaching loss of Ca2+ and Mg2+, whereas the effects were significantly reversed by nitrification inhibitors. These results further supported the importance of nitrate leaching in promoting the Ca2+ and Mg2+ losses. Together, this study revealed new insights into the dynamics of cation losses mainly regulated by nitrate leaching loss, highlighting that optimizing N management is an effective strategy to alleviate base cation losses and subsequent soil acidification for sustainable agricultural management.
[Display omitted]
•The N fertilizer application significantly increased Ca2+ and Mg2+ leaching loss.•NO3- leaching plays a greater role in promoting Ca2+ and Mg2+ loss than soil pH.•Soil pH reduction caused by N application increased base cation mobilization.•Leaching loss of nitrate as coupled ions promoted the Ca2+ and Mg2+ leaching.•Optimizing N management effectively alleviate Ca2+ and Mg2+ leaching loss. |
---|---|
ISSN: | 0378-3774 1873-2283 |
DOI: | 10.1016/j.agwat.2024.108708 |