Resonant terahertz detection using graphene plasmons

Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-12, Vol.9 (1), p.5392-8, Article 5392
Hauptverfasser: Bandurin, Denis A., Svintsov, Dmitry, Gayduchenko, Igor, Xu, Shuigang G., Principi, Alessandro, Moskotin, Maxim, Tretyakov, Ivan, Yagodkin, Denis, Zhukov, Sergey, Taniguchi, Takashi, Watanabe, Kenji, Grigorieva, Irina V., Polini, Marco, Goltsman, Gregory N., Geim, Andre K., Fedorov, Georgy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moiré minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures) and promise a viable route for various photonic applications. Plasmons confined in field effect transistors were long envisioned for resonant detection of light at THz frequencies, however realization of such photodetectors has proven challenging. Here, the authors fabricate antenna-coupled graphene transistors which exhibit resonant photoresponse to incident radiation and use them to study plasmons in graphene and its moiré superlattices.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-07848-w