An Adaptive Square Root Unscented Kalman Filter Approach for State of Charge Estimation of Lithium-Ion Batteries

An accurate state of charge (SOC) estimation is of great importance for the battery management systems of electric vehicles. To improve the accuracy and robustness of SOC estimation, lithium-ion battery SOC is estimated using an adaptive square root unscented Kalman filter (ASRUKF) method. The squar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2017-09, Vol.10 (9), p.1345
Hauptverfasser: Liu, Shulin, Cui, Naxin, Zhang, Chenghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An accurate state of charge (SOC) estimation is of great importance for the battery management systems of electric vehicles. To improve the accuracy and robustness of SOC estimation, lithium-ion battery SOC is estimated using an adaptive square root unscented Kalman filter (ASRUKF) method. The square roots of the variance matrices of the SOC and noise can be calculated directly by the ASRUKF algorithm, which ensures the symmetry and nonnegative definiteness of the matrices. The process values and measurement noise covariance can be adaptively adjusted, which greatly improves the accuracy, stability, and self-adaptability of the filter. The effectiveness of the proposed method has been verified through experiments under different operating conditions. The obtained results were compared with those of extended Kalman filter (EKF) and unscented Kalman filter (UKF) , which indicates that the ASRUKF method provides better accuracy, robustness and convergence in the estimation of battery SOC for electric vehicles. The proposed method has a mean SOC estimation error of 0.5% and a maximum SOC estimation error of 0.8%. These errors are lower than those of other methods.
ISSN:1996-1073
1996-1073
DOI:10.3390/en10091345