Vehicle license plate recognition for fog‐haze environments

The technique of vehicle license plate recognition can recognize and count the vehicles automatically, and thus many applications regarding the vehicles are greatly facilitated. However, the recognitions of vehicle license plates are extremely difficult especially in some fog‐haze environments becau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET image processing 2021-05, Vol.15 (6), p.1273-1284
Hauptverfasser: Jin, Xianli, Tang, Ruocong, Liu, Linfeng, Wu, Jiagao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The technique of vehicle license plate recognition can recognize and count the vehicles automatically, and thus many applications regarding the vehicles are greatly facilitated. However, the recognitions of vehicle license plates are extremely difficult especially in some fog‐haze environments because the fog and haze blur the boundaries and characters of license plates significantly, which makes the license plates hard to be detected or recognised. To this end, this paper proposes a vehicle License Plate Recognition method for Fog‐Haze environments (LPRFH). In LPRFH, a dark channel prior algorithm based on the local estimation of atmospheric light value is applied to dehaze the blurred images preliminarily. Then, the images are further dehazed, and the license plate regions are detected through a Joint Further‐dehazing and Region‐extracting Model on basis of an object detection convolution neural network. Finally, the image super‐resolution is accomplished with a convolution‐enhanced super‐resolution convolutional neural network, and hence the characters of license plates can be recognised successfully. Extensive experiments have been conducted, and the results indicate that LPRFH can recognise the license plates accurately even in some severe fog‐haze environments.
ISSN:1751-9659
1751-9667
DOI:10.1049/ipr2.12103