Unexpected dynamics in femtomolar complexes of binding proteins with peptides

Ultra-tight binding is usually observed for proteins associating with rigidified molecules. Previously, we demonstrated that femtomolar binders derived from the Armadillo repeat proteins (ArmRPs) can be designed to interact very tightly with fully flexible peptides. Here we show for ArmRPs with four...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-11, Vol.14 (1), p.7823-7823, Article 7823
Hauptverfasser: Cucuzza, Stefano, Sitnik, Malgorzata, Jurt, Simon, Michel, Erich, Dai, Wenzhao, Müntener, Thomas, Ernst, Patrick, Häussinger, Daniel, Plückthun, Andreas, Zerbe, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultra-tight binding is usually observed for proteins associating with rigidified molecules. Previously, we demonstrated that femtomolar binders derived from the Armadillo repeat proteins (ArmRPs) can be designed to interact very tightly with fully flexible peptides. Here we show for ArmRPs with four and seven sequence-identical internal repeats that the peptide-ArmRP complexes display conformational dynamics. These dynamics stem from transient breakages of individual protein-residue contacts that are unrelated to overall unbinding. The labile contacts involve electrostatic interactions. We speculate that these dynamics allow attaining very high binding affinities, since they reduce entropic losses. Importantly, only NMR techniques can pick up these local events by directly detecting conformational exchange processes without complications from changes in solvent entropy. Furthermore, we demonstrate that the interaction surface of the repeat protein regularizes upon peptide binding to become more compatible with the peptide geometry. These results provide novel design principles for ultra-tight binders. High binding affinities are usually obtained when ligands are rigidified. Here the authors present flexible peptides binding to Armadillo repeat proteins with femtomolar affinity. They demonstrate that the bound state is characterized by residual dynamics limiting entropic losses upon binding.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-43596-2