Cluster dynamics modeling of hydrogen retention and desorption in tungsten with saturation and multi-trapping effect of sinks
Hydrogen (H) retention and desorption in tungsten (W)-based plasma-facing materials are still not well understood, largely due to the limitations of ex-situ observations in experimental detection methods like thermal desorption spectroscopy (TDS). In order to reveal the fundamental mechanisms behind...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2024-09, Vol.64 (9), p.96037 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogen (H) retention and desorption in tungsten (W)-based plasma-facing materials are still not well understood, largely due to the limitations of ex-situ observations in experimental detection methods like thermal desorption spectroscopy (TDS). In order to reveal the fundamental mechanisms behind H retention and desorption, we developed a cluster dynamics model, IRadMat-TDS, for theoretical modeling of depth distribution and TDS of deuterium (D) in polycrystalline W. The model newly includes the saturated absorption and emission of D in inherent sinks like grain boundaries (GBs), as well as the multi-trapping effect of D in various types of GBs with different trapping energies. The simulated TDS spectra are in agreement with experimental ones. For polycrystalline W under D ion irradiation within keV-energy range, two typical thermal desorption peaks in TDS at around 490 and 550 K are explicitly attributed to D emission from GBs and vacancies, respectively. And GBs play a major role in D retention. Moreover, the broad peaks in TDS come from the convolution of multi-trapping of D in sinks with different types of trapping sites rather than a single-site approximation. |
---|---|
ISSN: | 0029-5515 1741-4326 |
DOI: | 10.1088/1741-4326/ad6913 |