Integrated Development of a Topology-Optimized Compliant Mechanism for Precise Positioning

A scheme for modelling and controlling a two-dimensional positioning system with a topology-optimized compliant mechanism is presented. The system is designed to ensure a relatively large workspace and exhibit robustness against system nonlinearities. A detailed design procedure based on topology op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Actuators 2022-07, Vol.11 (7), p.179
Hauptverfasser: Hu, Yaoyuan, Ju, Bingfeng, Zhu, Wule
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A scheme for modelling and controlling a two-dimensional positioning system with a topology-optimized compliant mechanism is presented. The system is designed to ensure a relatively large workspace and exhibit robustness against system nonlinearities. A detailed design procedure based on topology optimization is presented, and a nonlinear description of the designed mechanism is developed as a starting point for further precise position control. The theoretical model is shown to be suitable for a considerably larger working range without losing consistency. A backstepping controller is employed to manipulate the nonlinearities in the model resulting from the geometrical and material nonlinearity of the mechanical structure. The hysteresis of the piezoelectric actuator is also taken into consideration. An experimental verification of the controller demonstrates that the proposed design approach improves the performance of compliant mechanism and satisfies the needs for precision positioning.
ISSN:2076-0825
2076-0825
DOI:10.3390/act11070179