Fate of transgenic soybean DNA and immune response of broilers fed genetically modified DP-3Ø5423–1 soybean

Increased use of genetically modified (GM) plants in the food and feed industry has raised several concerns about the presence of unwanted genes in the food chain and potential associated health risks. In recent years, several studies have compared the nutrient contents of GM crops to conventional c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Poultry science 2024-04, Vol.103 (4), p.103499-103499, Article 103499
Hauptverfasser: Calik, Ali, Emami, Nima K., White, Mallory B., Dalloul, Rami A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased use of genetically modified (GM) plants in the food and feed industry has raised several concerns about the presence of unwanted genes in the food chain and potential associated health risks. In recent years, several studies have compared the nutrient contents of GM crops to conventional counterparts, and some have also tracked the fate of novel DNA fragments and proteins in the gastrointestinal (GIT) and their presence in several tissues. This study was conducted to investigate the fate of transgenic PHP19340A DNA fragment containing gm-fad2-1 (Soybean Event DP-3Ø5423-1) gene in digestive tract contents, blood, internal organs, and muscle tissues. The effects of feeding DP-3Ø5423-1 full-fat soybean meal (FFSBM) to broiler chickens on immune response and blood profiles were also evaluated on d 35. Day-old Ross 308 birds (n = 480) were randomly allocated to 24 floor pens in a 2 × 2 factorial arrangement with diet and gender as main factors. Birds were fed diets containing 20% of either DP-3Ø5423-1 or non-GM FFSBM for 35 d. Data were subjected to a 2-way ANOVA using the GLM procedure of JMP (Pro13). Based on PCR analysis, transgenic PHP19340A DNA fragment containing gm-fad2-1 gene was degraded throughout the digestive system to reach undetectable level in the cecal digesta. Moreover, there was no transgenic gene translocation to blood, organs, or muscle tissue. Feeding DP-3Ø5423-1 FFSBM to broilers had no effect on mRNA abundance of IL-1β, IL-2, IL-6, IL-12B, IL-17A, IFNγ, TNFα, and NF-κB in the spleen or on blood profile. In conclusion, these findings indicate that the examined transgenic fragment in DP-3Ø5423-1 FFSBM progressively degraded in the GIT and did not translocate into blood or tissues. Along with the immune response and blood profile findings, it can be assumed that DP-3Ø5423-1 soybean is safe and unlikely to pose any health risks to broilers or consumers.
ISSN:0032-5791
1525-3171
DOI:10.1016/j.psj.2024.103499