Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations
In this paper, we establish some new fixed point theorems for generalized ϕ–ψ-contractive mappings satisfying an admissibility-type condition in a Hausdorff rectangular metric space with the help of C-functions. In this process, we rectify the proof of Theorem 3.2 due to Budhia et al. [New fixed poi...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis (Vilnius, Lithuania) Lithuania), 2020-07, Vol.25 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we establish some new fixed point theorems for generalized ϕ–ψ-contractive mappings satisfying an admissibility-type condition in a Hausdorff rectangular metric space with the help of C-functions. In this process, we rectify the proof of Theorem 3.2 due to Budhia et al. [New fixed point results in rectangular metric space and application to fractional calculus, Tbil. Math. J., 10(1):91–104, 2017]. Some examples are given to illustrate the theorems. Finally, we apply our result (Corollary 3.6) to establish the existence of a solution for an initial value problem of a fractional-order functional differential equation with infinite delay. |
---|---|
ISSN: | 1392-5113 2335-8963 |
DOI: | 10.15388/namc.2020.25.17928 |