Quantitative in vivo whole genome motility screen reveals novel therapeutic targets to block cancer metastasis

Metastasis is the most lethal aspect of cancer, yet current therapeutic strategies do not target its key rate-limiting steps. We have previously shown that the entry of cancer cells into the blood stream, or intravasation, is highly dependent upon in vivo cancer cell motility, making it an attractiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-06, Vol.9 (1), p.2343-12, Article 2343
Hauptverfasser: Stoletov, Konstantin, Willetts, Lian, Paproski, Robert J., Bond, David J., Raha, Srijan, Jovel, Juan, Adam, Benjamin, Robertson, Amy E., Wong, Francis, Woolner, Emma, Sosnowski, Deborah L., Bismar, Tarek A., Wong, Gane Ka-Shu, Zijlstra, Andries, Lewis, John D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metastasis is the most lethal aspect of cancer, yet current therapeutic strategies do not target its key rate-limiting steps. We have previously shown that the entry of cancer cells into the blood stream, or intravasation, is highly dependent upon in vivo cancer cell motility, making it an attractive therapeutic target. To systemically identify genes required for tumor cell motility in an in vivo tumor microenvironment, we established a novel quantitative in vivo screening platform based on intravital imaging of human cancer metastasis in ex ovo avian embryos. Utilizing this platform to screen a genome-wide shRNA library, we identified a panel of novel genes whose function is required for productive cancer cell motility in vivo, and whose expression is closely associated with metastatic risk in human cancers. The RNAi-mediated inhibition of these gene targets resulted in a nearly total (>99.5%) block of spontaneous cancer metastasis in vivo. Tumour metastasis is dependent on tumour cell motility. Here, the authors investigate genes required for tumour cell motility by establishing a quantitative in vivo screening platform based on intravital imaging of human cancer metastasis in ex ovo avian embryos.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-04743-2