Fractional Versions of Hermite-Hadamard, Fejér, and Schur Type Inequalities for Strongly Nonconvex Functions
In modern world, most of the optimization problems are nonconvex which are neither convex nor concave. The objective of this research is to study a class of nonconvex functions, namely, strongly nonconvex functions. We establish inequalities of Hermite-Hadamard and Fejér type for strongly nonconvex...
Gespeichert in:
Veröffentlicht in: | Journal of function spaces 2022, Vol.2022, p.1-8 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In modern world, most of the optimization problems are nonconvex which are neither convex nor concave. The objective of this research is to study a class of nonconvex functions, namely, strongly nonconvex functions. We establish inequalities of Hermite-Hadamard and Fejér type for strongly nonconvex functions in generalized sense. Moreover, we establish some fractional integral inequalities for strongly nonconvex functions in generalized sense in the setting of Riemann-Liouville integral operators. |
---|---|
ISSN: | 2314-8896 2314-8888 |
DOI: | 10.1155/2022/7361558 |