Lactiplantibacillus plantarum MG4296 and Lacticaseibacillus paracasei MG5012 Ameliorates Insulin Resistance in Palmitic Acid-Induced HepG2 Cells and High Fat Diet-Induced Mice
The purpose of this study was to evaluate the capacity of MG4296 (MG4296) and MG5012 (MG5012) on insulin resistance (IR) and diabetes-related metabolic changes in palmitic acid (PA)-induced HepG2 cells and high-fat diet-induced mice. In vitro, cell-free extracts of MG4296 and MG5012 alleviated IR by...
Gespeichert in:
Veröffentlicht in: | Microorganisms (Basel) 2021-05, Vol.9 (6), p.1139 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this study was to evaluate the capacity of
MG4296 (MG4296) and
MG5012 (MG5012) on insulin resistance (IR) and diabetes-related metabolic changes in palmitic acid (PA)-induced HepG2 cells and high-fat diet-induced mice. In vitro, cell-free extracts of MG4296 and MG5012 alleviated IR by increasing glucose uptake and glycogen content in PA-induced insulin-resistant HepG2 cells. In vivo, MG4296 and MG5012 supplementation markedly decreased body weight and glucose tolerance. Administration of both strains also improved serum glucose, glycated hemoglobin, insulin, triglyceride, LDL/HDL ratio, and homeostatic model assessment of IR (HOMA-IR). Histopathological analysis of liver tissue demonstrated a significant reduction in lipid accumulation and glycogen content. Moreover, MG4296 and MG5012 treatment enhanced phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt) expression in the liver. Overall, MG4296 and MG5012 could prevent HFD-induced glucose tolerance and hyperglycemia by improving IR. Therefore,
MG4296 and
MG5012 could be useful as new probiotics candidates to improve T2DM. |
---|---|
ISSN: | 2076-2607 2076-2607 |
DOI: | 10.3390/microorganisms9061139 |