Lactiplantibacillus plantarum MG4296 and Lacticaseibacillus paracasei MG5012 Ameliorates Insulin Resistance in Palmitic Acid-Induced HepG2 Cells and High Fat Diet-Induced Mice

The purpose of this study was to evaluate the capacity of MG4296 (MG4296) and MG5012 (MG5012) on insulin resistance (IR) and diabetes-related metabolic changes in palmitic acid (PA)-induced HepG2 cells and high-fat diet-induced mice. In vitro, cell-free extracts of MG4296 and MG5012 alleviated IR by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microorganisms (Basel) 2021-05, Vol.9 (6), p.1139
Hauptverfasser: Won, Gayeong, Choi, Soo-Im, Kang, Chang-Ho, Kim, Gun-Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study was to evaluate the capacity of MG4296 (MG4296) and MG5012 (MG5012) on insulin resistance (IR) and diabetes-related metabolic changes in palmitic acid (PA)-induced HepG2 cells and high-fat diet-induced mice. In vitro, cell-free extracts of MG4296 and MG5012 alleviated IR by increasing glucose uptake and glycogen content in PA-induced insulin-resistant HepG2 cells. In vivo, MG4296 and MG5012 supplementation markedly decreased body weight and glucose tolerance. Administration of both strains also improved serum glucose, glycated hemoglobin, insulin, triglyceride, LDL/HDL ratio, and homeostatic model assessment of IR (HOMA-IR). Histopathological analysis of liver tissue demonstrated a significant reduction in lipid accumulation and glycogen content. Moreover, MG4296 and MG5012 treatment enhanced phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt) expression in the liver. Overall, MG4296 and MG5012 could prevent HFD-induced glucose tolerance and hyperglycemia by improving IR. Therefore, MG4296 and MG5012 could be useful as new probiotics candidates to improve T2DM.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms9061139