The game colouring number of powers of forests
We prove that the game colouring number of the $m$-th power of a forest of maximum degree $\Delta\ge3$ is bounded from above by \[\frac{(\Delta-1)^m-1}{\Delta-2}+2^m+1,\] which improves the best known bound by an asymptotic factor of 2.
Gespeichert in:
Veröffentlicht in: | Discrete mathematics and theoretical computer science 2015-11, Vol.18 no. 1 (Graph Theory) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the game colouring number of the $m$-th power of a forest of
maximum degree $\Delta\ge3$ is bounded from above by
\[\frac{(\Delta-1)^m-1}{\Delta-2}+2^m+1,\] which improves the best known bound
by an asymptotic factor of 2. |
---|---|
ISSN: | 1365-8050 1365-8050 |
DOI: | 10.46298/dmtcs.648 |