The game colouring number of powers of forests

We prove that the game colouring number of the $m$-th power of a forest of maximum degree $\Delta\ge3$ is bounded from above by \[\frac{(\Delta-1)^m-1}{\Delta-2}+2^m+1,\] which improves the best known bound by an asymptotic factor of 2.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science 2015-11, Vol.18 no. 1 (Graph Theory)
Hauptverfasser: Andres, Stephan Dominique, Hochstättler, Winfried
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the game colouring number of the $m$-th power of a forest of maximum degree $\Delta\ge3$ is bounded from above by \[\frac{(\Delta-1)^m-1}{\Delta-2}+2^m+1,\] which improves the best known bound by an asymptotic factor of 2.
ISSN:1365-8050
1365-8050
DOI:10.46298/dmtcs.648