Multi-Scale Safety Helmet Detection Based on SAS-YOLOv3-Tiny
In the practical application scenarios of safety helmet detection, the lightweight algorithm You Only Look Once (YOLO) v3-tiny is easy to be deployed in embedded devices because its number of parameters is small. However, its detection accuracy is relatively low, which is why it is not suitable for...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-04, Vol.11 (8), p.3652 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the practical application scenarios of safety helmet detection, the lightweight algorithm You Only Look Once (YOLO) v3-tiny is easy to be deployed in embedded devices because its number of parameters is small. However, its detection accuracy is relatively low, which is why it is not suitable for detecting multi-scale safety helmets. The safety helmet detection algorithm (named SAS-YOLOv3-tiny) is proposed in this paper to balance detection accuracy and model complexity. A light Sandglass-Residual (SR) module based on depthwise separable convolution and channel attention mechanism is constructed to replace the original convolution layer, and the convolution layer of stride two is used to replace the max-pooling layer for obtaining more informative features and promoting detection performance while reducing the number of parameters and computation. Instead of two-scale feature prediction, three-scale feature prediction is used here to improve the detection effect about small objects further. In addition, an improved spatial pyramid pooling (SPP) module is added to the feature extraction network to extract local and global features with rich semantic information. Complete-Intersection over Union (CIoU) loss is also introduced in this paper to improve the loss function for promoting positioning accuracy. The results on the self-built helmet dataset show that the improved algorithm is superior to the original algorithm. Compared with the original YOLOv3-tiny, the SAS-YOLOv3-tiny has significantly improved all metrics (including Precision (P), Recall (R), Mean Average Precision (mAP), F1) at the expense of only a minor speed while keeping fewer parameters and amounts of calculation. Meanwhile, the SAS-YOLOv3-tiny algorithm shows advantages in accuracy compared with lightweight object detection algorithms, and its speed is faster than the heavyweight model. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11083652 |