Synthesis and electrochemical characterizations of poly(3,4-ethylenedioxythiophene/manganese oxide coated on porous carbon nanofibers as a potential anode for lithium-ion batteries
Poly(3,4-ethylenedioxythiophene)/manganese oxide coated on porous carbon nanofibers (P-CNFs/PEDOT/MnO2) is developed as an advanced anode material via the innovative combination of multiple routes, such as electrospinning, carbonization and electrodeposition. The structural and morphological charact...
Gespeichert in:
Veröffentlicht in: | Energy reports 2021-11, Vol.7, p.8677-8687 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Poly(3,4-ethylenedioxythiophene)/manganese oxide coated on porous carbon nanofibers (P-CNFs/PEDOT/MnO2) is developed as an advanced anode material via the innovative combination of multiple routes, such as electrospinning, carbonization and electrodeposition. The structural and morphological characterization of the P-CNFs/PEDOT/MnO2 electrode indicates that crosslinked and rough surface provides, as a strategic point, enough active sites for Li+ storage. PEDOT nanoparticles and irregular block shape of MnO2 are randomly oriented on the P-CNFs surface, thus allowing a possible electron-conducting pathway, increment in catalytic activity as well as a buffer of the volumetric changes upon cycling. Consequently, the obtained P-CNFs/PEDOT/MnO2 electrode exhibits a truly promising electrochemical performance, which displays discharge capacity of 1477 mAh/g, better than that of P-CNFs/PEDOT (1191 mAh/g), P-CNFs/MnO2 (763 mAh/g) and P-CNFs (433 mAh/g), at a current density of 2 mA/g. In addition, satisfactory electrochemical performances of the as-prepared P-CNFs/PEDOT/MnO2 electrode after 20 cycles of charge/discharge are detected, with a Coulombic efficiency higher than 90% and a charge-transfer resistance being relatively smaller (131.91 Ω) than that of P-CNFs/PEDOT (232.66 Ω) and P-CNFs/MnO2(169.17 Ω) electrodes. Thus, these results indicate that the P-CNFs/PEDOT/MnO2 electrode could offer a great potential to replace commercial graphite for lithium-ion batteries.
[Display omitted]
•Innovative symbiosis between preparation techniques: electrospinning, carbonization and electrodeposition.•Design of a sustainable and cheap anode for lithium batteries, with a specific capacity exceeding 1400 mAh/g.•Synergy between active sites for Li+ insertion, electronic conductivity and high theoretical capacity.•A great potential to replace commercial graphite for lithium-ion batteries. |
---|---|
ISSN: | 2352-4847 2352-4847 |
DOI: | 10.1016/j.egyr.2021.10.110 |