Incorporation of Ontologies in Data Warehouse/Business Intelligence Systems - A Systematic Literature Review

Semantic Web (SW) techniques, such as ontologies, are used in Information Systems (IS) to cope with the growing need for sharing and reusing data and knowledge in various research areas. Despite the increasing emphasis on unstructured data analysis in IS, structured data and its analysis remain crit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information management data insights 2022-11, Vol.2 (2), p.100131, Article 100131
Hauptverfasser: Antunes, António Lorvão, Cardoso, Elsa, Barateiro, José
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semantic Web (SW) techniques, such as ontologies, are used in Information Systems (IS) to cope with the growing need for sharing and reusing data and knowledge in various research areas. Despite the increasing emphasis on unstructured data analysis in IS, structured data and its analysis remain critical for organizational performance management. This systematic literature review aims at analyzing the incorporation and impact of ontologies in Data Warehouse/Business Intelligence (DW/BI) systems, contributing to the current literature by providing a classification of works based on the field of each case study, SW techniques used, and the authors’ motivations for using them, with a focus on DW/BI design, development and exploration tasks. A search strategy was developed, including the definition of keywords, inclusion and exclusion criteria, and the selection of search engines. Ontologies are mainly defined using the Ontology Web Language standard to support multiple DW/BI tasks, such as Dimensional Modeling, Requirement Analysis, Extract-Transform-Load, and BI Application Design. Reviewed authors present a variety of motivations for ontology-driven solutions in DW/BI, such as eliminating or solving data heterogeneity/semantics problems, increasing interoperability, facilitating integration, or providing semantic content for requirements and data analysis. Further, implications for practice and research agenda are indicated.
ISSN:2667-0968
2667-0968
DOI:10.1016/j.jjimei.2022.100131