In vivo biodistribution study of TAT-L-Sco2 fusion protein, developed as protein therapeutic for mitochondrial disorders attributed to SCO2 mutations

The rapid progress achieved in the development of many biopharmaceuticals had a tremendous impact on the therapy of many metabolic/genetic disorders. This type of fruitful approach, called protein replacement therapy (PRT), aimed to either replace the deficient or malfunctional protein in human tiss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular genetics and metabolism reports 2020-12, Vol.25, p.100683-100683, Article 100683
Hauptverfasser: Kaiafas, Georgios C., Papagiannopoulou, Dionysia, Miliotou, Αndroulla N., Tsingotjidou, Anastasia S., Chalkidou, Parthenopi C., Tsika, Aikaterini C., Spyroulias, Georgios A., Tsiftsoglou, Asterios S., Papadopoulou, Lefkothea C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rapid progress achieved in the development of many biopharmaceuticals had a tremendous impact on the therapy of many metabolic/genetic disorders. This type of fruitful approach, called protein replacement therapy (PRT), aimed to either replace the deficient or malfunctional protein in human tissues that act either in plasma membrane or via a specific cell surface receptor. However, there are also many metabolic/genetic disorders attributed to either deficient or malfunctional proteins acting intracellularly. The recent developments of Protein Transduction Domain (PTD) technology offer new opportunities by allowing the intracellular delivery of recombinant proteins of a given therapeutic interest into different subcellular sites and organelles, such as mitochondria and other entities. Towards this pathway, we applied successfully PTD Technology as a protein therapeutic approach, in vitro, in SCO2 deficient primary fibroblasts, derived from patient with mutations in human SCO2 gene, responsible for fatal, infantile cardioencephalomyopathy and cytochrome c oxidase deficiency. In this work, we radiolabeled the recombinant TAT-L-Sco2 fusion protein with technetium-99 m to assess its in vivo biodistribution and fate, by increasing the sensitivity of detection of even low levels of the transduced recombinant protein. The biodistribution pattern of [99mTc]Tc-TAT-L-Sco2 in mice demonstrated fast blood clearance, significant hepatobiliary and renal clearance. In addition, western blot analysis detected the recombinant TAT-L-Sco2 protein in the isolated mitochondria of several mouse tissues, including heart, muscle and brain. These results pave the way to further consider this PTD-mediated Protein Therapy Approach as a potentially alternative treatment of genetic/metabolic disorders. [Display omitted] •Radiolabeling of human recombinant mitochondrial TAT-L-Sco2 fusion protein with 99mTc for the first time.•[99mTc]Tc-TAT-L-Sco2 can be successfully transduced into the mitochondria of peripheral tissues upon injection into animals.•Protein Replacement Therapy, through PTD technology, can be a potential therapeutic approach for mitochondrial disorders.
ISSN:2214-4269
2214-4269
DOI:10.1016/j.ymgmr.2020.100683