Iron Chelator DIBI Suppresses Formation of Ciprofloxacin-Induced Antibiotic Resistance in Staphylococcus aureus

Antibiotic resistance of bacterial pathogens results from their exposure to antibiotics and this has become a serious growing problem that limits effective use of antibiotics. Resistance can arise from mutations induced by antibiotic-mediated damage with these mutants possessing reduced target sensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antibiotics (Basel) 2022-11, Vol.11 (11), p.1642
Hauptverfasser: Allan, David S., Holbein, Bruce E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antibiotic resistance of bacterial pathogens results from their exposure to antibiotics and this has become a serious growing problem that limits effective use of antibiotics. Resistance can arise from mutations induced by antibiotic-mediated damage with these mutants possessing reduced target sensitivity. We have studied ciprofloxacin (CIP)-mediated killing of Staphylococcus aureus and the influence of the Reactive Oxygen Species (ROS) inactivator, thiourea and the iron chelator DIBI, on initial killing by CIP and their effects on survival and outgrowth upon prolonged exposure to CIP. CIP at 2× MIC caused a rapid initial killing which was not influenced by initial bacterial iron status and which was followed by robust recovery growth over 96 h exposure. Thiourea and DIBI did slow the initial rate of CIP killing but the overall extent of kill by 24 h exposure was like CIP alone. Thiourea permitted recovery growth whereas this was strongly suppressed by DIBI. Small Colony Variant (SCV) survivors were progressively enriched in the survivor population during CIP exposure, and these were found to have stable slow-growth phenotype and acquired resistance to CIP and moxifloxacin but not to other non-related antibiotics. DIBI totally suppressed SCV formation with all survivors remaining sensitive to CIP and to DIBI. DIBI exposure did not promote resistance to DIBI. Our evidence indicates a high potential for DIBI as an adjunct to CIP and other antibiotics to both improve antibiotic efficacy and to thwart antibiotic resistance development.
ISSN:2079-6382
2079-6382
DOI:10.3390/antibiotics11111642