Protocol to prepare functional cellular nanovesicles with PD1 and TRAIL to boost antitumor response

Immunotherapy has achieved notable success in tumor treatment, but it is restricted to a small number of patients due to multiple immunosuppressive pathways in the tumor microenvironment. Here, we present a step-by-step protocol to prepare functional cellular nanovesicles from HEK293-FT cells displa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:STAR protocols 2021-03, Vol.2 (1), p.100324-100324, Article 100324
Hauptverfasser: Yu, Peiwen, Zheng, Dongye, Zhang, Cuilin, Wu, Ming, Liu, Xiaolong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Immunotherapy has achieved notable success in tumor treatment, but it is restricted to a small number of patients due to multiple immunosuppressive pathways in the tumor microenvironment. Here, we present a step-by-step protocol to prepare functional cellular nanovesicles from HEK293-FT cells displaying PD1 and TRAIL. TRAIL specifically induces immunogenic cancer cell death to initiate an immune response, and ectogenic PD1 blocks the PD1/PDL1 checkpoint signal to reactivate anergic tumor-specific CD8+ T cells. For complete details on the use and execution of this protocol, please refer to Wu et al. (2020). [Display omitted] •Established stable HEK293 FT cells expressing PD1 and TRAIL•Prepare functional cellular nanovesicles (FCNVs) from stable HEK293 FT cells•FCNVs can boost antitumor response by the cooperative roles of PD1 and TRAIL Immunotherapy has achieved notable success in tumor treatment, but it is restricted to a small number of patients due to multiple immunosuppressive pathways in the tumor microenvironment. Here, we present a step-by-step protocol to prepare functional cellular nanovesicles from HEK293-FT cells displaying PD1 and TRAIL. TRAIL specifically induces immunogenic cancer cell death to initiate an immune response, and ectogenic PD1 blocks the PD1/PDL1 checkpoint signal to reactivate anergic tumor-specific CD8+ T cells.
ISSN:2666-1667
2666-1667
DOI:10.1016/j.xpro.2021.100324