Deployment behavior control using cables and bi-shape memory alloy convex tape booms
This study aims to demonstrate the synchronous and stable deployment of a newly proposed boom system that consists of cables, a rotary damper, and shape memory alloy with a memorized convex tape shape. Through a shaft, a rotary damper is connected to a reel, and cables wound around the reel are conn...
Gespeichert in:
Veröffentlicht in: | Advances in mechanical engineering 2017-07, Vol.9 (7), p.168781401770790 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aims to demonstrate the synchronous and stable deployment of a newly proposed boom system that consists of cables, a rotary damper, and shape memory alloy with a memorized convex tape shape. Through a shaft, a rotary damper is connected to a reel, and cables wound around the reel are connected to the shape memory alloy boom tips. The deployed part consists of bi-shape memory alloy convex tape booms in which two shape memory alloy convex tapes are combined to form a convex lens cross section, and the outside of the bi-shape memory alloy convex tape is wrapped by a sheet-type heater and polyimide film. The boom is deployed using only the shape recovery force of the shape memory alloy. By installing cables and a rotary damper, the deployment behavior of each boom is controlled, and each boom is deployed synchronously owing to the resistance force of the damper to a leading deploy boom. Moreover, the structural stiffness control concept of the proposed shape memory alloy bi-convex tape boom is discussed considering that Young’s modulus becomes almost half in the martensitic phase. |
---|---|
ISSN: | 1687-8132 1687-8140 1687-8140 |
DOI: | 10.1177/1687814017707909 |