Immune Response Associated Gene Signatures in Aortic Dissection Compared to Aortic Aneurysm
Thoracic aortic dissections (TAD) are life-threatening events mostly requiring immediate surgical treatment. Although dissections mainly occur independently of thoracic aortic aneurysms (TAA), both share a high comorbidity. There are several indications for an involvement of the immune system in the...
Gespeichert in:
Veröffentlicht in: | Frontiers in bioscience (Landmark. Print) 2024-02, Vol.29 (2), p.64-64 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thoracic aortic dissections (TAD) are life-threatening events mostly requiring immediate surgical treatment. Although dissections mainly occur independently of thoracic aortic aneurysms (TAA), both share a high comorbidity. There are several indications for an involvement of the immune system in the development of TAD, just as in TAA. Nevertheless, specific disease-relevant genes, biomolecular processes, and immune-specific phenotypes remain unknown.
RNA from isolated aortic smooth muscle cells from TAD (n = 4), TAA (n = 3), and control patients were analyzed using microarray-based technologies. Additionally, three publicly available bulk RNA-seq studies of TAD (n = 23) and controls (n = 17) and one single-cell RNA-seq study of TAA (n = 8) and controls (n = 3) were analyzed. Differentially expressed genes were identified and used to identify affected pathways in TAD. Five selected genes were validated by quantitative real-time polymerase chain reaction (PCR).
We identified 37 genes that were significantly dysregulated in at least three TAD studies-24 of them were not shown to be associated with TAD, yet. Gene ontology analysis showed that immune response was significantly affected. Five of the genes (
,
,
,
, and
) were revealed as core genes that affect immune response in TAD. We compared the gene expression of those genes to TAA and found that
,
and potentially also
were upregulated in TAD.
The identified immune-related genes showed TAD-specificity, independent of possible pre-existing comorbidities like TAA. So, these genes represent potential biomarkers and therapeutic targets linked to the immune response in acute TAD. Additionally, we identified a set of differentially expressed genes that represents a resource for further studies. |
---|---|
ISSN: | 2768-6701 2768-6698 |
DOI: | 10.31083/j.fbl2902064 |