Research on performance and potential of distributed heating system for peak shaving with multi-energy resource

Climate change and its negative effects are driving the global shift from fossil fuels to renewable energy sources. To tackle the dependency on traditional energy sources in harsh winter regions and improve heating quality during periods of thermal demand fluctuations, this paper proposes a new dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-10, Vol.14 (1), p.25350-21, Article 25350
Hauptverfasser: Zhang, Tianyang, Dewancker, Bart Julien, Gao, Weijun, Zhao, Xueyuan, Wei, Xindong, Liu, Zu-An, Chen, Weilun, Zhao, Qinfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate change and its negative effects are driving the global shift from fossil fuels to renewable energy sources. To tackle the dependency on traditional energy sources in harsh winter regions and improve heating quality during periods of thermal demand fluctuations, this paper proposes a new distributed heating peak shaving system (DHPS). The system combines municipal heat and clean energy within the secondary network while reducing the return water temperature in the primary network. It comprises solar collectors, electric thermal storage tanks (ETST), and absorption heat pump (AHP) units, integrated into conventional heat exchange stations. The system operates in two modes to manage peak and off-peak loads respectively, with TRNSYS simulation used to evaluate performance across a range of peak-shaving gradients. A multidimensional comprehensive assessment is conducted between the DHPS under optimal peak shaving coefficient ( θ ) conditions and conventional peak clipping boiler (PCB). Results indicate that DHPS achieves a high primary energy ratio (PER) of 1.251 at θ = 0.5, reducing combustion emissions by nearly 40%. The static payback period (PBP) of the system is 3.5 years. When the electricity price drops to 0.275 CNY, its operational costs are comparable to PCB. DHPS caters to the energy characteristics of cold regions where electricity supply exceeds demand. It enables flexible peak shaving while ensuring the complete utilization of clean energy and effectively utilizing waste heat from power plants.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-76108-3