Jelly Fig ( Ficus awkeotsang Makino) Exhibits Antioxidative and Anti-Inflammatory Activities by Regulating Reactive Oxygen Species Production via NFκB Signaling Pathway

Antioxidant and anti-inflammatory activities of Makino extract (FAE) on Hs68 fibroblasts and BALB/c nude-mouse models are evaluated in this study. FAE was found to be non-toxic and showed high levels of DPPH, H O , and hydroxyl radical scavenging abilities; a ferrous chelating capacity; as well as f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants 2022-05, Vol.11 (5), p.981
Hauptverfasser: Lin, Meng-Jin, Lin, Ping, Wen, Kuo-Ching, Chiang, Hsiu-Mei, Lu, Mei-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antioxidant and anti-inflammatory activities of Makino extract (FAE) on Hs68 fibroblasts and BALB/c nude-mouse models are evaluated in this study. FAE was found to be non-toxic and showed high levels of DPPH, H O , and hydroxyl radical scavenging abilities; a ferrous chelating capacity; as well as ferric-reducing antioxidant capability. The antioxidant activity of FAE was strongly associated with polyphenolic content (flavonoids at 10.3 mg QE g and total phenol at 107.6 mg GAE g ). The anti-inflammatory activity of FAE and the underlying molecular mechanisms were also investigated. The a* value of the mouse dorsal skin after treatment with FAE at 1.5 mg/mL in addition to chronic UVB exposure was found to decrease by 19.2% during a ten-week period. The anti-inflammatory effect of FAE was evidenced by the decreased accumulation of inflammatory cells and skin thickness. Expression levels of UVB-induced inflammatory proteins, including ROS, NF-κB, iNOS, COX-2, and IL-6, were significantly reduced upon FAE treatment in vitro and in vivo. Collectively, our results suggest that the inhibition of ROS and UVB-induced activation of the NF-κB downstream signaling pathway by FAE, indicating considerable potential as a versatile adjuvant against free radical damage in pharmaceutical applications.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox11050981