Addressing Irreversibility and Structural Distortion in WS2 Inorganic Fullerene-Like Nanoparticles: Effects of Voltage Cutoff Experiments in Beyond Li+‑Ion Storage Applications

Large interlayer spacing beneficially allows Na+- and K+-ion storage in transition-metal dichalcogenide (TMD)-based electrodes, but side reactions and volume change, which pulverize the TMD crystalline structure, are persistent challenges for the utilization of these materials in next-generation dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-04, Vol.9 (15), p.17125-17136
Hauptverfasser: Dey, Sonjoy, Roy, Arijit, Mujib, Shakir Bin, Krishnappa, Manjunath, Zak, Alla, Singh, Gurpreet
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large interlayer spacing beneficially allows Na+- and K+-ion storage in transition-metal dichalcogenide (TMD)-based electrodes, but side reactions and volume change, which pulverize the TMD crystalline structure, are persistent challenges for the utilization of these materials in next-generation devices. This study first determines whether irreversibility due to structural distortion, which results in poor cycling stability, is also apparent in the case of inorganic fullerene-like (IF) tungsten disulfide (WS2) nanocages (WS2IF). To address these problems, this study proposes upper and lower voltage cutoff experiments to limit specific reactions in Na+/WS2IF and K+/WS2IF half-cells. Three-dimensional (3D) differential capacity curves and derived surface plots highlight the continuation of reversible reactions when a high upper cutoff technique is applied, thereby indirectly suggesting restricted structural dissolution. This resulted in improved capacity retention with stable performance and a higher Coulombic efficiency, laying the ground for the use of TMD-based materials beyond Li+-ion storage devices.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c09758