493 Tired and hungry: a potential role for CD47 in T cell exhaustion
BackgroundMultiple suppressive mechanisms within the tumor microenvironment are capable of blunting anti-tumor T cell responses, including the engagement of inhibitory receptors expressed in tumor-associated, exhausted CD8+ T cells, such as programmed cell death protein 1 (PD-1), T-cell immunoglobul...
Gespeichert in:
Veröffentlicht in: | Journal for immunotherapy of cancer 2020-11, Vol.8 (Suppl 3), p.A304-A305 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BackgroundMultiple suppressive mechanisms within the tumor microenvironment are capable of blunting anti-tumor T cell responses, including the engagement of inhibitory receptors expressed in tumor-associated, exhausted CD8+ T cells, such as programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), 2B4 (also known as CD244), and T cell immunoreceptor with Ig and ITIM domains (TIGIT).1 2 While immune checkpoint blockade therapies aimed at reinvigorating T cell effector function have demonstrated their clinical effectiveness,3 4 not all patients demonstrate long-term disease control.5 The refractory nature of terminally differentiated, exhausted CD8+ T cells to be reinvigorated by PD-1 blockade is one potential cause.6–8 This limitation warrants the need to explore modulatory pathways that potentially program T cells toward exhaustion.MethodsSingle cell-RNA sequencing (scRNA-seq) data derived from the tumor-infiltrating lymphocytes (TILs) of melanoma patients9 were used for transcriptomic analysis and flow cytometry results were used to quantify protein levels in TILs. Murine B16-F10 (B16) melanoma model was used for both in vitro and in vivo studies. TCR-transgenic Pmel-1 and OT-1 transgenic mice, as well as CD47-/- (knockout, KO) mice were purchased from the Jackson Laboratory to generate CD47+/+ (wild-type, WT), CD47± (heterozygote, HET) mice with Pmel-1 or OT-1 background. For T cell co-transfer studies, Rag-deficient mice or C57BL/6j mice with sub-lethal irradiation (600cGy) were used as recipients. Naïve TCR-transgenic CD47-WT and CD47-HET CD8+ T cells were labelled, mixed in a 1:1 ratio for co-transfer experiments.ResultsFlow cytometry analysis of human melanoma TILs found a strong upregulation of CD47 expression in tumor-associated, exhausted CD8+ T cells. We confirmed that CD47 transcription is significantly elevated among CD8+ T cells with a phenotype consistent with exhaustion using scRNA-seq results of TILs derived from melanoma patients.9 Our study in murine B16 melanoma model confirms our finding in melanoma patients. To specifically address the role of CD47 in anti-tumor CD8 effector function, we conducted T cell co-transfer studies and found that CD8+ T cells with lower copy number of CD47 (CD47-HET) significantly outnumber the co-transferred CD47-WT CD8+ T cells within the tumor, exhibiting an enhanced effector function and less exhausted phenotype. Our study dem |
---|---|
ISSN: | 2051-1426 |
DOI: | 10.1136/jitc-2020-SITC2020.0493 |