ARU-DGAN: A dual generative adversarial network based on attention residual U-Net for magneto-acousto-electrical image denoising

Magneto-Acousto-Electrical Tomography (MAET) is a multi-physics coupling imaging modality that integrates the high resolution of ultrasound imaging with the high contrast of electrical impedance imaging. However, the quality of images obtained through this imaging technique can be easily compromised...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences and engineering : MBE 2023-01, Vol.20 (11), p.19661-19685
Hauptverfasser: Bu, Shuaiyu, Li, Yuanyuan, Ren, Wenting, Liu, Guoqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magneto-Acousto-Electrical Tomography (MAET) is a multi-physics coupling imaging modality that integrates the high resolution of ultrasound imaging with the high contrast of electrical impedance imaging. However, the quality of images obtained through this imaging technique can be easily compromised by environmental or experimental noise, thereby affecting the overall quality of the imaging results. Existing methods for magneto-acousto-electrical image denoising lack the capability to model local and global features of magneto-acousto-electrical images and are unable to extract the most relevant multi-scale contextual information to model the joint distribution of clean images and noise images. To address this issue, we propose a Dual Generative Adversarial Network based on Attention Residual U-Net (ARU-DGAN) for magneto-acousto-electrical image denoising. Specifically, our model approximates the joint distribution of magneto-acousto-electrical clean and noisy images from two perspectives: noise removal and noise generation. First, it transforms noisy images into clean ones through a denoiser; second, it converts clean images into noisy ones via a generator. Simultaneously, we design an Attention Residual U-Net (ARU) to serve as the backbone of the denoiser and generator in the Dual Generative Adversarial Network (DGAN). The ARU network adopts a residual mechanism and introduces a linear Self-Attention based on Cross-Normalization (CNorm-SA), which is proposed in this paper. This design allows the model to effectively extract the most relevant multi-scale contextual information while maintaining high resolution, thereby better modeling the local and global features of magneto-acousto-electrical images. Finally, extensive experiments on a real-world magneto-acousto-electrical image dataset constructed in this paper demonstrate significant improvements in preserving image details achieved by ARU-DGAN. Furthermore, compared to the state-of-the-art competitive methods, it exhibits a 0.3 dB increase in PSNR and an improvement of 0.47% in SSIM.
ISSN:1551-0018
1551-0018
DOI:10.3934/mbe.2023871