Rhizosphere Microbiota Promotes the Growth of Soybeans in a Saline-Alkali Environment under Plastic Film Mulching
The rhizosphere microbiota plays a critical and crucial role in plant health and growth, assisting plants in resisting adverse stresses, including soil salinity. Plastic film mulching is an important method to adjust soil properties and improve crop yield, especially in saline-alkali soil. However,...
Gespeichert in:
Veröffentlicht in: | Plants (Basel) 2023-05, Vol.12 (9), p.1889 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rhizosphere microbiota plays a critical and crucial role in plant health and growth, assisting plants in resisting adverse stresses, including soil salinity. Plastic film mulching is an important method to adjust soil properties and improve crop yield, especially in saline-alkali soil. However, it remains unclear whether and to what extent the association between these improvements and rhizosphere microbiota exists. Here, from a field survey and a greenhouse mesocosm experiment, we found that mulching plastic films on saline-alkali soil can promote the growth of soybeans in the field. Results of the greenhouse experiment showed that soybeans grew better in unsterilized saline-alkali soil than in sterilized saline-alkali soil under plastic film mulching. By detecting the variations in soil properties and analyzing the high-throughput sequencing data, we found that with the effect of film mulching, soil moisture content was effectively maintained, soil salinity was obviously reduced, and rhizosphere bacterial and fungal communities were significantly changed. Ulteriorly, correlation analysis methods were applied. The optimization of soil properties ameliorated the survival conditions of soil microbes and promoted the increase in relative abundance of potential beneficial microorganisms, contributing to the growth of soybeans. Furthermore, the classification of potential key rhizosphere microbial OTUs were identified. In summary, our study suggests the important influence of soil properties as drivers on the alteration of rhizosphere microbial communities and indicates the important role of rhizosphere microbiota in promoting plant performance in saline-alkali soil under plastic film mulching. |
---|---|
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants12091889 |