Lung cancer progression alters lung and gut microbiomes and lipid metabolism
Despite advances in medical technology, lung cancer still has one of the highest mortality rates among all malignancies. Therefore, efforts must be made to understand the precise mechanisms underlying lung cancer development. In this study, we conducted lung and gut microbiome analyses and a compreh...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-01, Vol.10 (1), p.e23509, Article e23509 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite advances in medical technology, lung cancer still has one of the highest mortality rates among all malignancies. Therefore, efforts must be made to understand the precise mechanisms underlying lung cancer development. In this study, we conducted lung and gut microbiome analyses and a comprehensive lipid metabolome analysis of host tissues to assess their correlation. Alternations in the lung microbiome due to lung cancer, such as a significantly decreased abundance of Firmicutes and Deferribacterota, were observed compared to a mock group. However, mice with lung cancer had significantly lower relative abundances of Actinobacteria and Proteobacteria and higher relative abundances of Cyanobacteria and Patescibacteria in the gut microbiome. The activations of retinol, fatty acid metabolism, and linoleic acid metabolism metabolic pathways in the lung and gut microbiomes was inversely correlated. Additionally, changes occurred in lipid metabolites not only in the lungs but also in the blood, small intestine, and colon. Compared to the mock group, mice with lung cancer showed that the levels of adrenic, palmitic, stearic, and oleic (a ω-9 polyunsaturated fatty acid) acids increased in the lungs. Conversely, these metabolites consistently decreased in the blood (serum) and colon. Leukotriene B4 and prostaglandin E2 exacerbate lung cancer, and were upregulated in the lungs of the mice with lung cancer. However, isohumulone, a peroxisome proliferator-activated receptor gamma activator, and resolvin (an ω-3 polyunsaturated fatty acid) both have anti-cancer effects, and were upregulated in the small intestine and colon. Our multi-omics data revealed that shifts in the microbiome and metabolome occur during the development of lung cancer and are of possible clinical importance. These results reveal one of the gut-lung axis mechanisms related to lung cancer and provide insights into potential new targets for lung cancer treatment and prophylaxis. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2023.e23509 |