Transport Theorem for Spaces and Subspaces of Arbitrary Dimensions

Using the apparatus of traditional differential geometry, the transport theorem is derived for the general case of a M-dimensional domain moving in a N-dimensional space, M ≤ N . The interesting concepts of curvatures and normals are illustrated with well-known examples of lines, surfaces and volume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2020-06, Vol.8 (6), p.899
Hauptverfasser: Jaric, Jovo P., Vignjevic, Rade, Mesarovic, Sinisa Dj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the apparatus of traditional differential geometry, the transport theorem is derived for the general case of a M-dimensional domain moving in a N-dimensional space, M ≤ N . The interesting concepts of curvatures and normals are illustrated with well-known examples of lines, surfaces and volumes. The special cases where either the space or the moving subdomain are material are discussed. Then, the transport at hypersurfaces of discontinuity is considered. Finally, the general local balance equations for continuum of arbitrary dimensions with discontinuities are derived.
ISSN:2227-7390
2227-7390
DOI:10.3390/math8060899