Implications of cosmologically coupled black holes for pulsar timing arrays

It has been argued that realistic models of (singularity-free) black holes (BHs) embedded within an expanding Universe are coupled to the large-scale cosmological dynamics, with striking consequences, including pure cosmological growth of BH masses. In this pilot study, we examine the consequences o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-12, Vol.14 (1), p.31296-11, Article 31296
Hauptverfasser: Calzà, Marco, Gianesello, Francesco, Rinaldi, Massimiliano, Vagnozzi, Sunny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been argued that realistic models of (singularity-free) black holes (BHs) embedded within an expanding Universe are coupled to the large-scale cosmological dynamics, with striking consequences, including pure cosmological growth of BH masses. In this pilot study, we examine the consequences of this growth for the stochastic gravitational wave background (SGWB) produced by inspiraling supermassive cosmologically coupled BHs. We show that the predicted SGWB amplitude is enhanced relative to the standard uncoupled case, while maintaining the [Formula: see text] frequency scaling of the spectral energy density. For the case where BH masses grow with scale factor as [Formula: see text], thus contributing as a dark energy component to the cosmological dynamics, [Formula: see text] can be enhanced by more than an order of magnitude. This has important consequences for the SGWB signal detected by pulsar timing arrays, whose measured amplitude is slightly larger than most theoretical predictions for the spectrum from inspiraling binary BHs, a discrepancy which can be alleviated by the cosmological mass growth mechanism.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-82661-8