New Invariant Quantity To Measure The Entanglement In The Braids

In this work, we demonstrate  that the integral formula for a generalised Sato-Levine invariant is consistent in certain situations with Evans and Berger's formula for the fourth-order winding number. Also, we found that, in principle, one can derive analogous  high-order winding numbers by whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Nigerian Society of Physical Sciences 2022-11, Vol.4 (4), p.1051
Hauptverfasser: Mayah, Faik, Alokbi, Nisreen, Rasheed, Ali Sabeeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we demonstrate  that the integral formula for a generalised Sato-Levine invariant is consistent in certain situations with Evans and Berger's formula for the fourth-order winding number. Also, we found that, in principle, one can derive analogous  high-order winding numbers by which one can calculate the entanglement of braids. The winding number for the Brunnian 4-braid is calculated algebraically using the cup product  on the cohomology of a finite regular CW-space which is the complement $\mathbb{R}^3\backslash \mathcal{B}_4$.
ISSN:2714-2817
2714-4704
DOI:10.46481/jnsps.2022.1051