SU(2)-Symmetric Exactly Solvable Models of Two Interacting Qubits
This paper presents a two-qubit model derived from an SU(2)-symmetric 4×4 Hamiltonian. The resulting model is physically significant and, due to the SU(2) symmetry, is exactly solvable in both time-independent and time-dependent cases. Using the formal, general form of the related time evolution ope...
Gespeichert in:
Veröffentlicht in: | Physics 2024-09, Vol.6 (3), p.1111-1123 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a two-qubit model derived from an SU(2)-symmetric 4×4 Hamiltonian. The resulting model is physically significant and, due to the SU(2) symmetry, is exactly solvable in both time-independent and time-dependent cases. Using the formal, general form of the related time evolution operator, the time dependence of the entanglement level for certain initial conditions is examined within the Rabi and Landau–Majorana–Stückelberg–Zener scenarios. The potential for applying this approach to higher-dimensional Hamiltonians to develop more complex exactly solvable models of interacting qubits is also highlighted. |
---|---|
ISSN: | 2624-8174 2624-8174 |
DOI: | 10.3390/physics6030069 |