SU(2)-Symmetric Exactly Solvable Models of Two Interacting Qubits

This paper presents a two-qubit model derived from an SU(2)-symmetric 4×4 Hamiltonian. The resulting model is physically significant and, due to the SU(2) symmetry, is exactly solvable in both time-independent and time-dependent cases. Using the formal, general form of the related time evolution ope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics 2024-09, Vol.6 (3), p.1111-1123
1. Verfasser: Grimaudo, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a two-qubit model derived from an SU(2)-symmetric 4×4 Hamiltonian. The resulting model is physically significant and, due to the SU(2) symmetry, is exactly solvable in both time-independent and time-dependent cases. Using the formal, general form of the related time evolution operator, the time dependence of the entanglement level for certain initial conditions is examined within the Rabi and Landau–Majorana–Stückelberg–Zener scenarios. The potential for applying this approach to higher-dimensional Hamiltonians to develop more complex exactly solvable models of interacting qubits is also highlighted.
ISSN:2624-8174
2624-8174
DOI:10.3390/physics6030069