Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics
Thermoelectrics enable direct heat-to-electricity transformation, but their performance has so far been restricted by the closely coupled carrier and phonon transport. Here, we demonstrate that the quantum gaps, a class of planar defects characterized by nano-sized potential wells, can decouple carr...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-09, Vol.13 (1), p.5612-9, Article 5612 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermoelectrics enable direct heat-to-electricity transformation, but their performance has so far been restricted by the closely coupled carrier and phonon transport. Here, we demonstrate that the quantum gaps, a class of planar defects characterized by nano-sized potential wells, can decouple carrier and phonon transport by selectively scattering phonons while allowing carriers to pass effectively. We choose the van der Waals gap in GeTe-based materials as a representative example of the quantum gap to illustrate the decoupling mechanism. The nano-sized potential well of the quantum gap in GeTe-based materials is directly visualized by in situ electron holography. Moreover, a more diffused distribution of quantum gaps results in further reduction of lattice thermal conductivity, which leads to a peak
ZT
of 2.6 at 673 K and an average ZT of 1.6 (323–723 K) in a GeTe system. The quantum gap can also be engineered into other thermoelectrics, which provides a general method for boosting their thermoelectric performance.
Defects are believed to always scatter carriers. Here, the authors find that the quantum gaps in GeTe-based materials do not scatter carriers, which decouple the carriers and phonons transport leading to high thermoelectric performance. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-33330-9 |