UV/TiO2 photodegradation of metronidazole, ciprofloxacin and sulfamethoxazole in aqueous solution: An optimization and kinetic study

[Display omitted] Emerging pharmaceutical ingredients (APIs) like sulfamethoxazole (SMX), metronidazole (MNZ) and ciprofloxacin (CIP) are biopersistent and toxic to the environment and public health. In this study, UV/TiO2 photodegradation was applied in the degradation of SMX, MNZ and CIP individua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of chemistry 2022-07, Vol.15 (7), p.103900, Article 103900
Hauptverfasser: Akter, Surya, Islam, Md. Shahinoor, Kabir, Md. Humayun, Shaikh, Md. Aftab Ali, Gafur, Md. Abdul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Emerging pharmaceutical ingredients (APIs) like sulfamethoxazole (SMX), metronidazole (MNZ) and ciprofloxacin (CIP) are biopersistent and toxic to the environment and public health. In this study, UV/TiO2 photodegradation was applied in the degradation of SMX, MNZ and CIP individually and in a mixture. For a 5 mg/L SMX solution, about 97% of SMX was degraded within 360 min, which was reduced to 80% for 80 mg/L of SMX solution at the same TiO2 dosage and photodegradation time. The maximum removals of MNZ and CIP as individual components were 100% and 89%, respectively at 600 min of photodegradation reaction time. For binary mixtures, the highest removal (100%) was achieved for MNZ and CIP ([MNZ] = [CIP] = 40 mg/L) mixture at 120 min whereas the degradations were 97% and 96% for SMX and MNZ, and SMX and CIP binary mixtures, respectively, even after 600 min of experimental time at the same concentrations. For tertiary mixture, the maximum degradation 99% was observed for (SMX = CIP] = 20 mg/L and [MNZ] = [40 mg/L) at 600 min. The observed reaction rate was 0.01085 min−1 when SMX concentration was 5 mg/L, which decreased to 0.00501 min−1 for SMX concentration of 80 mg/L, indicating decreasing of reaction rate at higher concentration. The results indicate that the UV/TiO2 process is promising to apply for the treatment of pharmaceutical wastewaters.
ISSN:1878-5352
1878-5379
DOI:10.1016/j.arabjc.2022.103900