Mechanical and Thermal Properties of 3D Printed Polycarbonate
This study aims at showing the potential of additive manufacturing as a new processing route for designing future insulators in the building sector. Polycarbonate (PC) is studied as a possible candidate for designing these new insulators. This polymer offers several advantages, among them fire resis...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2022-05, Vol.15 (10), p.3686 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aims at showing the potential of additive manufacturing as a new processing route for designing future insulators in the building sector. Polycarbonate (PC) is studied as a possible candidate for designing these new insulators. This polymer offers several advantages, among them fire resistance and stability of its physical properties at high temperatures. The 3D printing of PC is attempted using fused deposition modelling technology. The printing temperature and infill rate are varied to achieve optimal mechanical and thermal characteristics. The results show that an optimal printing temperature of 280 °C is needed to achieve high tensile performance. In addition, thermal properties including thermal conductivity and effusivity increase with the increase of the infill rate in opposition to the thermal diffusivity decrease. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15103686 |