Ecosystem function and particle flux dynamics across the Mackenzie Shelf (Beaufort Sea, Arctic Ocean): an integrative analysis of spatial variability and biophysical forcings
A better understanding of how environmental changes affect organic matter fluxes in Arctic marine ecosystems is sorely needed. Here we combine mooring times series, ship-based measurements and remote sensing to assess the variability and forcing factors of vertical fluxes of particulate organic carb...
Gespeichert in:
Veröffentlicht in: | Biogeosciences 2013-05, Vol.10 (5), p.2833-2866 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A better understanding of how environmental changes affect organic matter fluxes in Arctic marine ecosystems is sorely needed. Here we combine mooring times series, ship-based measurements and remote sensing to assess the variability and forcing factors of vertical fluxes of particulate organic carbon (POC) across the Mackenzie Shelf in 2009. We developed a geospatial model of these fluxes to proceed to an integrative analysis of their determinants in summer. Flux data were obtained with sediment traps moored around 125 m and via a regional empirical algorithm applied to particle size distributions (17 classes from 0.08-4.2 mm) measured by an Underwater Vision Profiler 5. The low fractal dimension (i.e., porous, fluffy particles) derived from the algorithm (1.26 plus or minus 0.34) and the dominance (~ 77%) of rapidly sinking small aggregates (< 0.5 mm) in total fluxes suggested that settling material was the product of recent aggregation processes between marine detritus, gel-like substances, and ballast minerals. Modeled settling velocity of small and large aggregates was, respectively, higher and lower than in previous studies within which a high fractal dimension (i.e., more compact particles) was consequential of deep-trap collection (~400-1300 m). Redundancy analyses and forward selection of abiotic/biotic parameters, linear trends, and spatial structures (i.e., principal coordinates of neighbor matrices, PCNM) were conducted to partition the variation of the 17 POC flux size classes. Flux variability was explained at 69.5% by the addition of a temporal trend, 7 significant PCNM, and 9 biophysical variables. The first PCNM canonical axis (44.5% of spatial variance) reflected the total magnitude of POC fluxes through a shelf-basin gradient controlled by bottom depth and sea ice concentration (p < 0.01). The second most important spatial structure (5.0%) corresponded to areas where shelf break upwelling is known to occur under easterlies and where phytoplankton was dominated by diatoms. Among biophysical parameters, bacterial production and northeasterly wind (upwelling-favorable) were the two strongest corollaries of POC fluxes (r super(2) cum. = 0.37). Bacteria were correlated with small aggregates, while northeasterly wind was associated with large size classes (> 1 mm ESD), but these two factors were weakly related with each other. Copepod biomass was overall negatively correlated (p < 0.05) with vertical POC fluxes, implying that metazoans acted a |
---|---|
ISSN: | 1726-4189 1726-4170 1726-4189 |
DOI: | 10.5194/bg-10-2833-2013 |